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I .  Phys. A: Math. Gen. 21 (1994) 7403-7418. Printed in the UK 

Deformation of Lie algebras in a non-Chevalley basis and 
‘embedding’ of q-algebras 

A Sciarrinot 
Universiti di Napoli ‘Federico 11’, Dipartimento di Scienze Fisiche and INFN-Seione di 
Napoli, 1-80125 Naples, Italy 

Received 15 July 1993, in final form 14 April 1994 

Abskact. A deformation scheme for Lie algebras in a basis which manifestly exhibits for 
q =  I the conlent of a singular subalgebra is presented. This scheme allows to build up 
‘embedding’ chains of q-algebras which can he physically interesting. In the present paper 
the case when the rank of lhe subalgebra is one unit less than the rank of the algebra is 
studied and explicit constructions of the algebras are given in terms of q-bosonic and/or 
q-fermionic oscillators. 

I .  Introduction 

The quantum algebras G, or U J G ) ,  i.e. the q-deformed universal enveloping algebra 
of a semi-simple Lie algebra G (see for instance [I] for a more precise definition) are 
actually a topic of very active research both in physics and mathematics. It is far beyond 
the aim of this paper to present even a short review of the many physical applications 
which have been proposed starting from different points of view. The motivations of 
this study lie on the fact that the underlying idea in some applications of q-algebras is 
lo use a q-deformed algebra instead of a Lie algebra to realize a generulized dynarnicnl 
symmetry. It is well known that the generalized dynamical symmetry in many models 
of nuclear, hadronic, molecular and chemical physics is displayed through embedding 
chains of algebras of the type 

where SO(3) describes the angular momentum and, usually, the Lie algebras are realized 
in terms of bosonic creation-annihilation operators. An essential step to carry forward 
the program of application of q-algebras as generalizcddynumicn[symmetry is to dispose 
on a formalism which allows to build up chains analogous to equation (1 . I )  replacing 
the Lie algebras by the deformed ones. 
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The simplest, not trivial, chain is the q-analogous of the embedding chain of the 
Elliott model [2], i.e. 

SU,(3) 3 SO,(3). 

In  the Elliott model SO(3) is the three-dimensional principal subalgebra of SU(3) .  
Quite recently Van der Jeugt [ 3 ]  has investigated the existence of three-dimensional 
principal q-subalgebra for GI&+ I ) ,  showing that such a subalgebra exists only for 
n = 2  when the algebraic relations are restricted to the symmetric representations, but 
the coproduct of G1,(3) does nof induce a coproduct in the three-dimensional principal 
subalgebra. It is useful to emphasize that the definition of the coproduct is essential to 
define the tensor product of spaces. 

In [4] we tried to solve the problem the other way around: to define a true SO,(3), 
i.e. a deformed SO(3) in which a coproduct on the generators is defined, and to build 
up a deformed structure of the type G1,(3) or SU,(3). Indeed it has been shown that a 
‘deformed GI(3)’ can be obtained but, besides some ambiguity in the procedure, it was 
not clear how to impose on it the Hopf structure. The problem has been recently tackled 
by Quesne IS], which has constructed a deformed SU(3)  algebra in terms of q-boson 
operators transforming as vector under SO,(3), but many questions remain open in 
this approach. although quite interesting in view of its possible generalization to more 
general irreducible q-tensor operators. In particular also in this approach it is not clear 
how to endow the ‘deformed U(3)’ algebra with a Hopf structure. 

In a very simple and general way, Gq is well mathematically defined in the Chevalley- 
Cartan basis, see [ I ] ,  and we believe that the very root of the problem lies on the fact 
that this basis is not suitable to discuss embedding of subalgebras except the trivial 
ones. So we present here an alternative deformation scheme which can be useful to 
discuss ‘embedding’ chains of the type of (1 .1 ) .  Let us immediately emphasize that 
really the word ‘embedding’ is used in some loose sense as we will show that the obtained 
‘deformed algebra G’ is not the same as the usual Gq. In particular: 

(i) the ‘embedding’ requires the extension of the coproduct, counit and antipode 
to formal series of generators belonging to the algebra Gp ; 

(ii) the deformed algebra Gp constructed from the following deformation scheme is 
nof the same as the G, defined in the Chevalley basis. 

Let us point out what is the underlying idea for the proposed deformation scheme. 
Consider a semisimple Lie algebra G (of rank r )  and a not regular maximal subalgebra 
(of rank I )  Lc G.  For a classification and explicit construction of embeddings of semi- 
simple Lie subalgebras see [6] ,  where reference to the pioneering work of Dynkin on 
the subject can be found. The adjoint representation (ad,) decomposes as 

a d p a d r e  Rr (1.2) 
where Rr is a representation, in general reducible, of L. 

In the case of semi-simple Lie algebras, the algebra G can be constructed adding to 
the subalgebra L a suitable sets of elements belonging to RI., e.g. in the case of SU(3) 
one can add to the subalgebra SO(3)  a second-rank tensor operator highest-weight 
component. Then it is natural to wonder if a q-analogue of this procedure can be 
defined, i.e. to start by L, and then to add some more suitable generators. 

Let {E:, H;} ( i =  1, . . . , l )  be the generators of L in the Chevalley basis and 
(X,”, Kk} ( k = l , .  . . , v - l )  some elements of RI. with suitable properties. We call this 
basis Lbasis as it depends on the choice of the subalgebra L. We remark that in all, 
at our knowledge, explicit realizations of the deformed algebras Gq the commuting 
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elements are the same as the elements of the Cartan subalgebra of G. Then we define 
a deformation scheme in which the Cartan subalgebra of G, which is partly in the 
Cartan subalgebra of L, i.e. { H , ) ,  and partly in RL. namely {&}, is left invariant and 
the set of {E?,  X,”} is deformed in a suitable way. This deformation scheme will define 
a deformed algebra G, which clearly contains the deformed algebra L,, i.e. we have to 
build the chain 

G , I L , .  (1.3) 

Clearly some ambiguity is present in the definition of the deformation. In order to 
reduce the ambiguity we impose a minimal deformation sclieme requiring: 

(i) the Cartan subalgebra is lefr unmod$ed in the deformation; 
(ii) if the commutator of two generators gt, g-EG gives an element k belonging to 

the Cartan subalgebra, than the commutator of the corresponding deformed generators 
gives [k ] ,  . 
It has been shown in [4] that in the case of SC,(2) the q-tensor operators do not satisfy 
condition (i). 

The deformation scheme we have just sketched requires that the generators of L,, 
be expressed in function of those of G,. This is by no means evident apriori; we shall 
show that it  can be really done in a number of examples by explicit constructions in 
terms of q-bosons and/or q-fermionic oscillators (see appendix) but it will be clear that 
our construction is based on the properties of the deformed oscillators and that not 
always a q-bosons and q-fermionic oscillators realization can be obtained even if in the 
case q= 1 both are possible. 

The aim of this paper is not to discuss in whole generality this formalism, but mainly 
to illustrate, in the case where the rank of L is one unit less the rank of G, the general 
features of the proposed deformation scheme which can be applied to other, even if 
not to any, specific chains one is interested in. 

In section 2 we review the embedding of a singular subalgebra L c G  and introduce 
the Lbasis for the algebra G .  In section 3 we recall the definition of deformed Lie 
algebra G, in the Chevalley basis and then extend the deformation procedure to the L- 
basis. In section 4 we present some examples of the deformed algebra in the L-basis, 
using explicit realizations of L, and G, in terms of q-bosons and/or q-fermionic oscilla- 
tors. I n  section 5 a few conclusions, remarks and open questions are presented. Finally 
in the appendix we recall the definition of q-bosons and q-fermionic oscillators we use 
in the paper and we present a few useful q-identities. 

2. The L-basis for Lie algebras 

Let R be an irreducible representation ( I R )  of a subalgebra L of rank 1 of a Lie algebra 
G of rank Y, see equation (1.2), and let V the carrier space of R. 

I n  the following we need the following propositions. 

Proposition I .  There exists a nonempty set IC { 1,2, . . . , I }  such that for any j e l  in V 
there is a vector (eventually degenerate) X,’e V which is eigenvector of the generators 
Hi spanning the Cartan subalgebra Hc L with the same eigenvalues as E,*, i.e. *aq 
( i =  1 , .  . . , I ) .  
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ProoJ The proposition follows from the remark that in R defined by (1.2) there are 
r - 1  eigenvectors KO of H, with zero eigenvalues and from the property that, if A= ( m k }  
is a weight those j t h  components is positive, then A’={mi=nzk-ak,} is also a weight. 

In this paper we will consider only the simplest case where the rank of L is equal 
to r -  1 where r is the rank of G. In this case there is only one element K k ,  which we 
denoteK0,andonlyonenotdegenerateelementA’~whichwedenoteX;,jc{1,2, , . . , l } .  

With a suitable choice of normalization we can write 

[KO, E;] = s; (2.1) 

[KO, A’;] = E;. (2.2) 

Proposirion 2. If 

K O ,  [KO, E,”]]= [KO> x;1 = E: 
then commutator of X,’ with X; is equal to H, 

(2.3) 

ProoJ From the Jacobi identities for the algebra G we have 

[KO. [E,-,x;lI+[x;, [KO. E;II+[E;, [A’,’, Koll=O. (2.4) 

[E;.XT]= *cK,  (ce C) (2.5) 

As the first commutator is vanishing as 

it  follows 

[KO, [E;, A’,’]] = 0 =  [A’,’. X;] + [E;, E,”] (2.6) 

which implies 

[A’,’, 4-1 = [G+, E;] = H, . (2.7) 

Let us stress once more that (2.1) and (2.2) are not relations sufficient to define a 
Lie algebra structure on the set I f i ,  E:, KO, A’:. The fact the above set closes in a Lie 
algebra is a consequence of the fact it already belongs to a vectorial space G endowed 
with a Lie algebra structure, see equation (2.1). We start with a Lie algebra G defined 
in the Chevalley basis. Then a new basis is introduced which is formed by the generators 
of the subalgebra L (in the corresponding Chevalley basis) and by a lensor operator 
family of L (the set KO, X:). The new basis is a linear combination of the original 
generators of G. All this is trivial in absence of deformation. Then the generators of L 
and X: are deformed. A priori it is not clear that this deformation procedure can be 
really perfonned in a consistent way. The aim of this paper is to show that, at least in 
the simple cases considered, it can be performed and to analyse the results. Equations 
(2.1) and (2.2) are the ‘minimum’ set of relations we have to add to the definition of 
L in order to build up the algebra G. Finally let us also write the following proposition, 
even if we shall not use it in this paper, which may be useful in more general cases. 
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then we have 

(ad .E~)'-"vX,'=O 

ProoJ The Proposition follows from the following identity and recurrence formula 

(adA)"[B, C ] =  , [(ad AYE, (ad A)"-'C] 
O b i C n  ["I 1 

(2.9) 

[(ad A)"B, C ] = [ A ,  [(ad A)"-'& C ] + [ [ A ,  C ] ,  (ad A)"-IB] (2.10) 

and from the Serre relations for the algebra L. 
In the case [ = I -  1 we consider the following embeddings of singular maximal 

subalgebras L in the semi-simple Lie algebra G, of which we write also the corresponding 
decomposition of adG : 

A I  c D z  6-3 + 3 
AI C A Z  8-3 + 5 
A I  c B 2  10-3+7 
CzcA3 15+10+5 
G2 B3 21+14+7 

B.- icD,  n(2n - I )+(n  - 1)(2n - 1) + (2n - 1). 

We will discuss in section 4 all the corresponding deformations. 

3. The deformation procedure 

Herafter we shall use the same notations for the elements of the q-deformed algebras 
as for the non-deformed ones, hoping that no confusion arises. Let us recall the defini- 
tion of G, associated with a simple Lie algebra G of rank r defined by the Cartan matrix 
(a,) in the Chevalley basis. G, is generated by 3r elements e t  ,f;=eT and hi which satisfy 
( i , j = l = l , .  . . , r) 

where 

(3.2) 

and qj=q4, di being non-zero integers with greatest common divisor equal to one such 
that djav=4aji .  Furthermore, the generators have to satisfy the Serre relations: 

(3.3) n 
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where 

[nIJ= [11,[21,. . , [nl,. 
Analogous equations hold replacing e? by e;. In the following we assume hi= (h,)' and 
the deformation parameter q to be real. The algebra G, is endowed with a Hopf algebra 
structure. The action of the coproduct A, antipode S and co-unit E on the generators 
is as follows: 

A(hj)  = hj@l + 1 Qhj 

As the coproduct in a Hopf algebra satisfies ( g j ,  gjcG,) 

A(g,gi) = A k i ) A ( @ )  (3.6) 

it is essential to define which elements {gi} are the 'basis' of Gq. 
Le! us consider !he algebra L, defined in the Chevalley basis. Then the se! 

{E:, Hi}  (i= 1,2,  . . . , I )  (in the following we will denote the generators of L, by capital 
letters) satisfy equations (3.1), (3.3) and (3.5). We introduce the set (KO, X;) where 

[KO, E;] = U; (3.7) 

[HI, x;l=*al/xi' (3.8) 
and we require 

[x;, G I  = [ 4 I ,  [Ht ,  K01=0. (3.9) 
The elements (KO, X;) do not belong to Lq so aprtori no coproduct or antipode or 

co-unit is defined on them. We extend the Hopf structure from L, to (KO, X;) as it 
follows: 

A(Ko)=KoQl+ l@Ko A ( X t )  =X;@anJ~n+~-njl'@X,? 

S(K0) = -KO sex;, = -a"xj' (3.10) 

&(KO) = &(x;) = 0. 

Really we have to impose the Hopf structure only on the element KO, the Hopf 
structure on X; can be derived from equations (3.5)-(3.8) the consistency of the copro- 
duct being ensured by the equations (2.1) and (2.5). Let us emphasize once more that 
{ H j ,  KO}, (i= I , .  . . , I -  1)  are linear combinations of the elements of the basis of the 
Cartan subalgebra of G which are preserved unmodified in the deformation procedure. 

4. Examples 

In this section we will explicitly illustrate the proposed deformation procedure using 
an explicit realization of the sets E:, X," in terms of q-deformed bosonic and/or 
fermionic oscillators, see appendix for notation. 
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I t  is well known that an explicit construction of U&) can beobtained by introducing 
q-analogue of the harmonic oscillator boson operator [7] satisfying a q-deformed Weyl 
algebra. Introducing also the q-analogue of the fermionic operators satisfying a q- 
deformed Clifford algebra [S, I ]  this construction has been generalized to the q-universal 
enveloping algebra of all classical Lie algebra [ l ] ,  to the exceptional Lie algebra [9, IO]. 
(Really in [ I O ]  the construction of Uq(G2) has been obtained in terms of q-quasipara- 
fermions (called ‘q-skedofermions’), a realization of Uq(G2) in terms of q-fermions is 
given in [ 1 I].) 

4.1. S0,(4) 3SOq(3/ 

Let us consider the six generators J:, (a= 1.2; p = f, 0) defining two commuting 
SU(2).  If we deform these generators and impose on them or on their sum and difference 
the Hopf structure we get S0,(4), where SOq(3) is no more embedded. In order to 
preserve the ‘embedding’ of SO(3) we proceed according to the scheme of section 3. 
We deform the generators J:, i.e. we require (a,  p = 1,2):  

[J:, J~l=Sa,p[2.Glq [ J O ” ,  J g l =  +S,.DJ~ (4.1) 
then we define 

Lt = Jlq’*+ Jtq 2 -Jd (4.2) 

&= J;  + JO’ (4.3) 
which satisfy 

EL+, L-I = [2Lolq [Lo,  L,] = i L * .  (4.4) 
We impose the Hopf structure on the elements L, so getting SOq(3). Then we add 

the element 

K ~ =  J; - J: (4.5) 

[KO, L*1= +XI [X, ;x-1= 2& (4.6) 

(4.7) 

[X+ I x-I = [&lp [Lo, x01= 0 [Lo, X t l  = +X*. (4.8) 
We impose a coproduct. antipode and co-unit on KO, see equation (3.9), and then 

we consider the set of elements {Lp , X*, KO} as spanning S0,(4) in the SO(3) basis. 
Of course in the limit q= 1 we recover SO(4). Let us remark that the coproduct defined 
on La is not equivalent to the coproduct defined on the elements JZ in the Chevalley 
basis, see [12]. The generators of S0,(4) in the Chevalley basis, denoted by { J p ,  N p ;  
p =  +, 3) in [12], are related to our generators by the following relations: 

and define 

where 

X t-Jt - ’8- J:q-Ji, 

Clearly we have 

J3 =Lo N3=& (4.9) 
JL =q-Jt(L* -Xt)/2 (4.10) 

J:=q-’A(L+-X*)/2. (4.11) 
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Let us also remark that our construction is nol inuariunt for q-q-' due to the q 
factors appearing in the definition of L*. However an invariant construction can be 
obtained, assuming that the generators {J ; }  are invariant, defining 

L* = J:(&+q-e)/2+d(&+ q-'A)/2. (4.12) 

To simplify the formulae hereafter we shall use the not invariant formulation. 

oscillators. 
Let us give now an explicit realization in terms of q-bosons and q-fermionic 

I. q-Bosons realization 

Let us introduce four q-bosons (bt, bi) (i= I ,  2,3,4). We then can write 

L+ = b : b 2 q ( N ~ - N , i ) / 2 + b : b 4 q - ( N 1 - N 1 ) / 2  L-= (L+)+ (4.13) 

&= ; ( N ,  - N ~ +  N ,  - N ~ )  (4.14) KO= ; (NI - N2 - Ns + N4) 
,y + -  -b:bZq(N1-Nd!Z - b:b4q-G+"- N d / 2 ,  (4.15) 

In the Fock space of the q-bosons we can build representations of integer angular 
momentum provided we consider states which are obtained from the vacuum state by 
an equal number of creation operators of the set {b:,j=l,2} and of the set 
{bl, k=3,4).  

II.  q-Ferrnionic oscillators realization 

Introducing a set of two q-fermionic oscillators we can write 
L , = ~ : ~ ~ ~ I M ~ + M ~ / ~ +  a1 + a2 + 9 - ( M , - M d / 2  (4.16) 

&=MI KO= - M2. (4.17) 

In this construction we cannot get the integer angular momentum states in the Fock 
space of the q-fermionic oscillators due to the vanishing of the square of a fermionic 
oscillator. Clearly in the limit of q= 1 the set (X*, KO) transform under the SO(3) 
spanned by {L,,} as a vector representation. 

L- = (L+)' 

4.2. SUq(3) 1S0,(3) 

I. q-Bosons realization 

SOq(3) [3] is defined by 

[L+, L-l=P&I, I&, L*l = h L * .  (4.18) 

This SOq(3) can be endowed with an Hopf structure in the standard way, see [4]. 
Introducing a set of three q-boson b,,, b:, (p  = 1,0, -1) a realization of SOq(3) can 
be written: 

b Z N i - N - 1  (4.19) 
L+ = q N - ~ g - ' 1 2 N o J ~ b ~ b o + b o i b - , q N l q - 1 ! 2 N ~ ~ ~  (4.20) 

L- = b ; b l q N - ' q - ' / 2 N o J m  t a J ' q - ' ! 2 N o , / ~ b ? , b o .  (4.21) 
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Let us remark that L + ,  L- are not inuariant for q+q-] ,  while & is invariant., The 
dimension of the representations of S0,(3) in the Fock space of'the q-boson osbillators 
is given by 2 N +  1 (N=nl  + n O + n - , )  therefore it is always odd. So this is a realization 
of S0,(3) and not os SUq(2). Moreover for q= 1 we obtain the usual SU(3) realization 
in terms of boson oscillators. 

Let us add to the generators of S0,(3) the operator 

&=f(2No-NI-N-l)  (4.22) 
which satisfy 

where X + ( X  = ( X + ) + )  is given by 

x+=-q N - I  q - l / z N o J m b : b o  f bib- IqNt  1 -I/'NoJ-, 

[ K O ,  &l=O [ K O ,  L i l =  si (4.23) 

(4.24) 
Then we have 

[KO,  X*l= f L +  [Xt,X-1=[241,. (4.25) 

One can gain a better insight on the meaning of the elements KO and Xi in the limit 
q= 1, where they become (up to a multiplicative factor) respectively the m = O  and the 
m = f l  component of a rank-2 tensor operator for SO(3). 

II. q-Ferniionic oscillators realization 

We can also write a realization of S0,(3) in terms of a set of three q-fermionic oscillators 
just replacing in the above formulae bH by a, and N p  by M, . However in the Fock 
space of q-fermionic oscillators we can realize only the three-dimensional vector 
representation. 

The relations between the generators of Uq(3) in the Chevalley basis [3], denoted 
by h,, e: (e;=(e:)*) ( i =  1.2), and our generators are: 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

From (4.27)-(4.28) it follows that the definition, for instance, of the coproduct on 
the elements e: from the coproduct on ( L i , X . ,  hl  , hZ, h,) requires the extension of 
(2.6) to formal series expansion of (qN+1+q-N11)-1'2.  This feature will be present in all 
the following formulae. 

4.3. Spq(4) xSOq(3) 

I. q-Bosons realizarion 

Introducing a set of two q-boson (b l  . b:, b2,  b:) a realization of S0,(3) can be written: 
4 = ( - 3 N j - N 2 - 2 ) / 2  (4.30) 

L, = qblb;d-qNz + q- I (b2)Zq1 / 2 ( - 3 N r  + Nd (4.31) 

L- = q N 1 q , / m b z b :  - q-]q'!2<-3Nl t N d  (b;)' (4.32) 
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with 

[L+,  t - I  = [2L0Iv. (4.33) 

Also in this case Lt, are not inuariant for q-q-’, while & is invariant. 
Let us add to the generators of SOq(3) the operator 

KO = f (  N2 - NI) (4.34) 

[KO, &1=0 [KO. L*1= fXa (4.35) 

which satisfy 

where X, are given by 

x+ = q b l b ; d m q N z -  q-l(b2)2q1!2(-3N~ + N d  (4.36) 

x - = q N 2 q d m b 2 b :  +q-lq1/2(-3Nt+Y) (b:)2. (4.37) 

Then we have 

[&,X*I=fLa [X+ I x-I = [2&lp, (4.38) 

The relation between the generators of Spv(4) in the Chevalley basis [ l]  and our 
generators are (1 ‘short root’, 2 ‘long root’): 

hi=2&= N z - N I  h2=3& - 3Ko) = - N2-f (4.39) 

eY=$q-’(L++X+)(q N!+-Ni+l q )- 112 4- Na (4.40) 

(4.41) 

e; = (et)’ ( i =  I ,  2). (4.42) 

e:=f(q+q-I)-’Q(t+-X+)q I /2(3Ni - Nzl 

II. q-Ferinionic oscillafors realization 

From the isomorphism between Sp(4) and SO(5) we can construct a q-fermion realiza- 
tion of S0,(5)zSOq(3). 

Introducing a set of 2 q-fermionic oscillators (a l ,  a:, a2,  a:) a realization of SOq(3) 
can be written (q=e’): 

L+=a:a2{2 cosh i?(3M1+ 3,442-3) +(4+q-2) cosh  MI + MI- 1)} 

tA(2):{(gtq-’)co~h x2M1 t M 2 -  1 ) t~ (q2 tq -2 )}”2  (4.43) 

L- = (t’)+ &=2Ml+ M2-g 

where 

A(n)iA(n)T + f6qA(n);A(n)i= 6vqMl (4.44) 

[ M; , A (n$] = 6 ,  A(n$ [Mi, A(n)jl = -6UA(n), [ M ; ,  Mj] =O. (4.45) 

See, however, the appendix for comments on the q-fermionic oscillators. The construc- 
tion is invariant for 4’q-I. 

We add to the generators of S0,(3) the operator 

KO = -M2 (4.46) 
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(4.47) 

and then we proceed as before. We can also express in a straightforward way the 
generators of S0,(5) in the Chevalley basis, [I] in terms of (L*, XI, Lo, &). 

4.4. SU,(4) 3Sp, (4)  

Introducing a set of four q-fermionic oscillators we can write: 
,$=a:a2q(M1-Md/2+ 4 -(M?-Md/2 a3 + a4 (4.48) 

E: = ( q M 2  + q - M 2 ) ' / 2 a i a 3 ( p  + q-M1)1/2(q+ q-I)-l (4.49) 

Ei- = (E:)' ( i =  1,2) (4.50) 

HI = M I  - Mz+ M3- Ma (4.51) Hz = M2- M1 

which satisfy 

[E:, Er1 = [Hil, [E:, Ed= [H21n'. (4.52) 

We add the following element 

KO = M2+ M 3 .  (4.53) 

[KO, HiI=O [KO, E:I=O [ K a , E : ] = I X :  (4.54) 

x: = - a : a 2 q ( M > - M d / 2  + q-(Mt-Md/2a;a4 (4.55) 

Then we have 

where 

(4.56) 

The above construction is not invariant for 4-14-  1, but it is possible to write an 
invariant one along the same lines discussed in subsection 4.1. The Serre relations are 
trivially satisfied due to the vanishing of the square of a q-fermion. 

Let us remark that an analogue q-boson realization cannof be obtained as we get 

[E:, &1#O (4.57) 

and moreover the Serre relations are not satisfied. 

generators are ( f i=e,+;  i= 1,2,3): 
The relations between the generators of U,(4) in the Chevalley basis [ 11 and OUT 

hl = H I  +f(Hz- KO)+ M ~ = M I  - M z  h2 = H2 (4.58) 

h3=4(Ko- Hz) - Ma= M , -  M4 (4.59) 

el =$(E: -x:)~("- (4.60) 

e2=(4 Mz+ q - M l  1 -!PE+ z(4  MI+ 1-M>)-l/2(q+q-l) (4.61) 

e = i q  I (MI -M2)/2(E: +X?).  (4.62) 

ha= H I  + H 2 +  KO+ 2M4 
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4.5. SOq(7) 3 Uq(C2) 

We use the following realization [ 1 I] of the algebra U,(G2), nor inuariant for q-l-',  
in terms of q-fermionic oscillators: 

/?:=A(3):A(3)2 

E; = (E:)+ ( i=  I ,  2 )  (4.64) 

we get 

(4.65) 

(4.66) 

where we have used the q-identities given in the appendix. 

subsection 4. I .  
An invariant construction can be obtained modifying the definition of E: as in 

We add the following element 

K O = M I  + Ma (4.67) 

then we have 

[KO, Ifi] = [KO, E:] = O  [KO, E:]=fX: (4.68) 

where 

4.6. SOq(2n) 3Soq(2R- 1) 

We write the following realization for SOq(2n- I ) :  

( k = l ,  . . . ,  n-2)  

E: A( 2);A(2)x+ I (4.7 I )  

,#- , = (4.72) lanqM - I + W / 2  + q- (Mn-  I - MA12 a.-la, + + 

E,- = (E:)+ (4.73) 

Hk=Mk-Mk+i H.- I = 2Mn- I . (4.74) 

( i =  I , .  . . , n -  1) 

The above construction is not inuarianf for q+q-', but it can be made invariant, as 
in subsection 4.1. It is easy to verify that the above realization satisfies (3.1), with the 
Cartan matrix of SO(2n - I ) ,  the Serre relations (14) being verified i n  a trivial way due 
to the vanishing of the square of a fermionic oscillator. In particular we have: 

[E:, &l=[Hkld [E:- 1,  ET-II= [ H n -  11,. (4.75) 
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Then we add the element 

KO = M ,  (4.76) 

which satisfies 

IKo,H,I=O [KO. E;l=O [KO, E:- , I =  LY:- I (4.77) 

+ ( . w " . , + M , , ) / 2 +  - (M". , -M")!2  + + xLl =-a,-la,q 4 a.- la.. 

[KO, x."_ I ]  = *E:- I [X"+- I 9 XL- 11 = [H" - I],. 

where 

(4.78) 

Then we have: 

(4.79) 

An insight on the above realization is obtained in the limit q= I .  In this limit the 
realization of SO(2r- 1) is just the realization obtained by 'folding' the fermion realiza- 
tion of SO(2n) and KO is the vector of the fundamental vectorial representation with 
vanishing eigenvalues with respect to the Cartan subalgebra of SO(2n- 1). Let us 
emphasize that in the above realization the role of the q-fermionic oscillators is crucial. 

5. Conclusions 

We have presented a deformation scheme in a basis different from the Chevalley basis 
which allows us to build up embedding chains of q-algebras which may be useful in 
application in physics. A t  the end of each subsections of section 4 we have explicitly 
written the relations between the generators in the Chevalley basis of the deformed 
algebras and the generators of the 'deformed' algebrain the Lbasis. The definition of 
the coproduct allows one to perform tensor product of spaces which is an essential 
requirement to almost all applications one can imagine. Let us emphasize once more 
that the word 'embedding' should be taken in the loose sense we have specified in 
section I .  In fact the deformed Lie algebra G obtained is equivalent as enveloping 
algebra to the standard deformed G,, i.e. the one defined in the Chevalley basis by 
(3.1)-(3.5), but i t  is endowed by a Hopf structure different from the one of G,. We 
believe however that, according to the problem one is dealing with, it can be useful to 
use the L-basis or the Chevalley basis, in which, e.g. the R universal matrix has been 
built up. Let us emphasize that in this deformation scheme an extension of the definition 
of the coproduct From the enveloping algebra to a formal infinite series it is necessary 
due to the appearance in the equations of a square root expression of the sum of the 
exponentials of the N, or M , .  A peculiar feature of this deformation scheme is the fact 
that the deformed algebra L, is not always invariant for q 4 q - I ;  only the commuting 
subalgebra is always invariant. It seems that when the subalgebra L of G (for q= 1) is 
obtained by taking linear combination of generators corresponding to non-connected 
roots, then one can build up invariant realization of L,. Another peculiar feature is the 
fact that in the Lbasis we need the q-Serre relations only on the subalgebra L (in the 
cases considered in the paper two relations less than in the Chevalley basis). Indeed 
once the deformed set of generators {E:, &; i =  I , .  . . , I } ,  satisfying (3.1) and (3.3), 
are introduced the properties of the elements [,I$} are uniquely defined by (3.7). How- 
ever, let us emphasize that the choice of the element KO requires the knowledge of the 
whole algebra G, while for the deformation i n  the Chevalley basis only the knowledge 
of the generators corresponding to the simple roots of G is required. In this paper we 
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have restricted our analysis to the simplest case in which L is a simple maximal non- 
regular subalgebra of rank r - I of G and R is an irreducible representation. Many open 
problems are still present. In particular the choice of the set of elements Kk is some 
way arbitrary and it is not evident that the method can be applied to the deformation 
of any embedding of any semi-simple Lie algebra L or to any embedding chain as 

G, 2 Lq 2 J,  
It is also worth emphasizing that 
(i) the construction of the subalgebra L, is not unique, e.g. for another form of 

S0, (3)  see [4, 131; 
(ii) in our explicit construction, which exploits the property of factorization of the 

product of two generators, the role of q-bosons and q-fermionic oscillators is essential. 
I n  the light of possible applications one should also build up invariant operators 

(the q-analogue of the Casimir operators) in the above defined basis. I t  is also an 
interesting problem to study how the representations of G, decompose with respect to 
L,; in this context the choice of the definition of the coproduct is relevanl. 

We believe that it is possible to generalize this method to the real forms of the 
deformed simple Lie algebra and, moreover, to build up deformation scheme for non- 
semi-simple Lie algebra. 

Appendix 

Let us recall, to fix the notation, the definition of q-bosons which we denote by bt, bj 
and q-fermionic oscillators which we denote by a:, ai : 

b.bt ' I  - qsub;bj= 6,q-" (A.]) 
[ N i ,  b]]=6,b; [Nj ,  b,]= -6,bj [ N h  N11=0 (A.2) 
u,u;+q6~~a;uj=6,qM~ 64.3) 
[Mj,a;]=6iju; [Mj,ail=-&,a, [ M i ,  M,]=O. ('4.4) 

i t  may be useful to recall the following identities: 

The q-bosons are assumed to commute with the q-fermionic oscillators. 
We shall need the following useful identities: 

( q ~ A - q - n A ) = ( q ' - q - A ) ~ P ( q , n , A )  64.7) 
where 
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where A , X ,  Yare operators ([X, Y ] = O )  or c-numbers, n is an integer positive number 
(2Gn) and [/r-2/2] denotes the integer part of (n-2)/2. P(q,n ,A)  is invariant for 
q-+q-'. 

From (AS) we can define bosonic dilation operators 

D h )  = JP(q ,  n, N,)IP(q, n,  1) (A.12) 

acting on the q-bosons such that if the q-bosons 61 and 6, satisfy (A.1) then the q- 
bosons 

B: (n)  = Df(n)b: ~ , ( n )  = b,&) (A.13) 

satisfy 

and 

B,+(n)l =&,B,+(n) [N; ,  B~( f l ) l=-6~5 j (n )  Vn. (A.15) 

In [I41 the explicit construction of q-bosons in terms of non-deformed standard 
bosonic oscillators has been given. From this construction we can build up dilation 
operators which hold for any value of q'(q =exp A, q' = exp 2 ') : 

Df(q' /q)  = [sinh J.'Nj/Nj sinh A']'" x [sinh A N j / N ,  sinh L]-'''. (A.16) 

It is also known that. due to the fact that the square of the fermionic number 
operator for non-deformed as well as for the deformed fermionic oscillators is equal to 
the number operator itself. equations (A.31, (A.4) are satisfied by standard fermionic 
oscillators. In [ IS ]  a definition of q-fermion operators not equiualenr to the usual fermion 
operators is given by the equations 

v;y; + q6"y;vj= 6..q-"' v (A.17) 

[Cl,, v:1=60v; [Oh v,1=-6gv,. (A.18) 

The authors have shown that for q# 1 the square of the q-fermion ~ ( w ' )  vanishes only 
on the state of the Fock space. The above equation is not invariant for q+q-'. Should 
this invariance be assumed in the limit q= I one could find the number operator (D) 
equal to -yv+.  In order to  build up realization of deformed Lie algebras in terms of 
oscillators one needs to know the value of bilinears of the type w , ~ : ,  see (AS) and 
(A.6), which cannot be computed from (A.17) without any further assumption. In fact 
the authors in [I51 have built in terms of q-fermions a realization of SUq(2) only on 
the states of the Fock space. Such a restriction cannot be a very serious one for physical 
applications, so an investigation of the possibility to realize general deformed Lie 
algebras in terms of q-fermions should be carried on. In the present paper we have 
limited to consider the q-deformed fermionic oscillators given by (A.3) and (A.4) in 
terms of which, as shown in [ I ] ,  the deformed Lie of the series A,, B,,, D, can be 
realized as bilinears of fermionic oscillators. For a discussion of the different deformed 
fennionic algebras see [ 161. 
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